

Basic Chemistry

FIFTH EDITION

Timberlake - Timberlake

Periodic Table of Elements

This page intentionally left blank

BASIC CHEMISTRY

Fifth Edition
Global Edition

KAREN TIMBERLAKE

WILLIAM TIMBERLAKE

ค
 Pearson

Editor in Chief: Jeanne Zalesky
Executive Editor: Terry Haugen
Senior Acquisitions Editor: Scott Dustan
Acquisitions Editor, Global Editions: Murchana Borthakur
Executive Field Marketing Manager: Chris Barker
Project Manager: Laura Perry
Project Editor, Global Editions: Aurko Mitra
Senior Manufacturing Controller, Global Editions: Trudy Kimber
Program Manager: Lisa Pierce
Editorial Assistant: Lindsey Pruett
Marketing Assistant: Megan Riley
Executive Content Producer: Kristin Mayo
Media Content Producer: Jenny Moryan
Media Production Manager, Global Editions: Vikram Kumar
Project Management Team Lead: David Zielonka
Program Management Team Lead: Kristen Flathman
Senior Project Manager, FSV: Lumina Datamatics, Inc.
Illustrator: Imagineering
Rights \& Permissions Project Manager: Maya Gomez
Photo Researcher: Cordes Hoffman
Text Researcher: Erica Gordon
Design Manager: Marilyn Perry
Interior Designer: Gary Hespenheide
Cover Designer: Lumina Datamatics, Inc.
Manufacturing Buyer: Maura Zaldivar-Garcia
Cover Photo Credit: motorolka\Shutterstock
Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on pp. 701 to 704.
Acknowledgements of third party content appear on pages 701 to 704 , which constitutes an extension of this copyright page.
PEARSON, ALWAYS LEARNING, and MasteringChemistry ${ }^{\mathrm{TM}}$ are exclusive trademarks in the U.S. and/or other countries owned by Pearson Education, Inc. or its affiliates.

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England
and Associated Companies throughout the world
Visit us on the World Wide Web at:
www.pearsonglobaleditions.com
© Pearson Education Limited 2017
The rights of Karen Timberlake and William Timberlake to be identified as the authors of this work has been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Basic Chemistry, 5th edition, ISBN 9780134138046, by Karen Timberlake and William Timberlake published by Pearson Education © 2017.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library
10987654321
ISBN 10: 1-292-17024-7
ISBN 13: 978-1-292-17024-4
Typeset by Lumina Datamatics, Inc. Printed and bound in Malaysia.

Brief Contents

1 Chemistry in Our Lives 31
2 Chemistry and Measurements 57
3 Matter and Energy 99
4 Atoms and Elements 132
5 Electronic Structure of Atoms and Periodic Trends 161
6 Ionic and Molecular Compounds 195
7 Chemical Quantities 224
8 Chemical Reactions 254
9 Chemical Quantities in Reactions 279
10 Bonding and Properties of Solids and Liquids 309
11 Gases 353
12 Solutions 390
13 Reaction Rates and Chemical Equilibrium 439
14 Acids and Bases 473
15 Oxidation and Reduction 521
16 Nuclear Chemistry 553
17 Organic Chemistry 588
18 Biochemistry 641

Table of Contents

1Chemistry inOur Lives 31

Career: Forensic Scientist
1.1 Chemistry and Chemicals 32
1.2 Scientific Method: Thinking Like a Scientist 34
CHEMISTRY LINK TO HEALTHEarly Chemist: Paracelsus35
1.3 Learning Chemistry: A Study Plan 37
1.4 Key Math Skills for Chemistry 40
1.5 Writing Numbers in Scientific Notation 47
Concept Map 51
Chapter Review 52
Key Terms 52
Key Math Skills 52
Understanding the Concepts 54
Additional Questions and Problems 54
Challenge Questions 55
Answers 55
2Chemistry andMeasurements57

Career: Registered Nurse
2.1 Units of Measurement 58
2.2 Measured Numbers and Significant Figures 61
2.3 Significant Figures in Calculations 65
2.4 Prefixes and Equalities 69
2.5 Writing Conversion Factors 73
2.6 Problem Solving Using Unit Conversion 78
CHEMISTRY LINK TO HEALTH Toxicology and Risk-Benefit Assessment 82
2.7 Density 84
CHEMISTRY LINK TO HEALTH Bone Density 87
Concept Map 91
Chapter Review 91
Key Terms 92
Key Math Skill 93
Core Chemistry Skills 93
Understanding the Concepts 94
Additional Questions and Problems 95
Challenge Questions 96
Answers 97
3
Matter and Energy 99

Career: Dietitian
3.1 Classification of Matter 100 CHEMISTRY LINK TO HEALTH Breathing Mixtures 103
3.2 States and Properties of Matter 103
3.3 Temperature 107
CHEMISTRY LINK TO HEALTH
Variation in Body Temperature 110
3.4 Energy 111
CHEMISTRY LINK TO THE ENVIRONMENTCarbon Dioxide and Climate Change114
3.5 Specific Heat 115
3.6 Energy and Nutrition 119
CHEMISTRY LINK TO HEALTH
Losing and Gaining Weight 121
Concept Map 123
Chapter Review 123
Key Terms 124
Core Chemistry Skills 124
Understanding the Concepts 125
Additional Questions and Problems 127
Challenge Questions 128
Answers 128
Combining Ideas from Chapters 1 to 3 130
4
Atoms and Elements 132

Career: Farmer
4.1 Elements and Symbols 133
CHEMISTRY LINK TO THE ENVIRONMENT
Many Forms of Carbon 135
CHEMISTRY LINK TO HEALTHToxicity of Mercury135
4.2 The Periodic Table 136
CHEMISTRY LINK TO HEALTH Elements Essential to Health 140
4.3 The Atom 142
4.4 Atomic Number and Mass Number 146
4.5 Isotopes and Atomic Mass 148
Concept Map 153
Chapter Review 154
Key Terms 154
Core Chemistry Skills 155
Understanding the Concepts 156
Additional Questions and Problems 157
Challenge Questions 157
Answers 158
5
Electronic Structure of Atoms andPeriodic Trends 161

Career: Materials Engineer
5.1 Electromagnetic Radiation 162
CHEMISTRY LINK TO HEALTH
Biological Reactions to UV Light 164
5.2 Atomic Spectra and Energy Levels 165
CHEMISTRY LINK TO THE ENVIRONMENT
Energy-Saving Fluorescent Bulbs 167
5.3 Sublevels and Orbitals 168
5.4 Orbital Diagrams and Electron Configurations 172
5.5 Electron Configurations and the Periodic Table 177
5.6 Trends in Periodic Properties 181
Concept Map 188
Chapter Review 188
Key Terms 189
Core Chemistry Skills 190
Understanding the Concepts 191
Additional Questions and Problems 191
Challenge Questions 192
Answers 193
6
Ionic and Molecular Compounds 195

Career: Pharmacist
6.1 Ions: Transfer of Electrons 196
CHEMISTRY LINK TO HEALTH
Some Important lons in the Body 200
6.2 Ionic Compounds 201
6.3 Naming and Writing Ionic Formulas 204
6.4 Polyatomic Ions 209
6.5 Molecular Compounds: Sharing Electrons 213
Concept Map 217
Chapter Review 218
Key Terms 218
Core Chemistry Skills 219
Understanding the Concepts 219
Additional Questions and Problems 220
Challenge Questions 221
Answers 221
7
Chemical Quantities 224

Career: Veterinarian
7.1 The Mole 225
7.2 Molar Mass 229
7.3 Calculations Using Molar Mass 231
7.4 Mass Percent Composition 235
CHEMISTRY LINK TO THE ENVIRONMENT Fertilizers 237
7.5 Empirical Formulas 238
7.6 Molecular Formulas 242
Concept Map 246
Chapter Review 246
Key Terms 247
Core Chemistry Skills 247
Understanding the Concepts 248
Additional Questions and Problems 249
Challenge Questions 250
Answers 250
Combining Ideas from Chapters 4 to 7 252
8
ChemicalReactions254

Career: Exercise Physiologist
8.1 Equations for Chemical Reactions 255
8.2 Balancing a Chemical Equation 258
8.3 Types of Chemical Reactions 264
CHEMISTRY LINK TO HEALTHIncomplete Combustion: Toxicity of CarbonMonoxide 268
8.4 Oxidation-Reduction Reactions 269
Concept Map 273
Chapter Review 273
Key Terms 273
Core Chemistry Skills 274
Understanding the Concepts 274
Additional Questions and Problems 275
Challenge Questions 276
Answers 277
9
Chemical Quantities in Reactions 279

Career: Environmental Scientist
9.1 Conservation of Mass 280
9.2 Calculating Moles Using Mole-Mole
Factors 282
9.3 Mass Calculations for Reactions 285
9.4 Limiting Reactants 288
9.5 Percent Yield 293
9.6 Energy in Chemical Reactions 295
Cold Packs and Hot Packs 298
Concept Map 01
Key Terms 302
Core Chemistry Skills 303
Additional Questions and Problems 306
Challenge Questions 307
Answers 308
10
Bonding and Properties of Solids 309
Career: Histologist
10.1 Lewis Structures for Molecules and Polyatomic lons 310
10.2 Resonance Structures 316
10.3 Shapes of Molecules and Polyatomic Ions (VSEPR Theory) 318
10.4 Electronegativity and Bond Polarity 323
10.5 Polarity of Molecules 327
10.6 Intermolecular Forces between Atoms or Molecules 328
10.7 Changes of State 331
CHEMISTRY LINK TO HEALTH
Steam Burns 338
Concept Map 340
Chapter Review 340
Key Terms 341
Core Chemistry Skills 342
Understanding the Concepts 344
Additional Questions and Problems 345
Challenge Questions 346
Answers 347
Combining Ideas from Chapters 8 to 10 350
11Gases 353
Career: Respiratory Therapist
11.1 Properties of Gases 354
CHEMISTRY LINK TO HEALTH
Measuring Blood Pressure 357
11.2 Pressure and Volume (Boyle's Law) 359
CHEMISTRY LINK TO HEALTH
Pressure-Volume Relationship in Breathing 361
11.3 Temperature and Volume (Charles's Law) 362
11.4 Temperature and Pressure (Gay-Lussac's Law) 365
11.5 The Combined Gas Law 368
11.6 Volume and Moles (Avogadro's Law) 370
11.7 The Ideal Gas Law 373
11.8 Gas Laws and Chemical Reactions 377
11.9 Partial Pressures (Dalton's Law) 378
CHEMISTRY LINK TO HEALTH
Hyperbaric Chambers 382
Concept Map 383
Chapter Review 384
Key Terms 385
Core Chemistry Skills 385
Understanding the Concepts 386
Additional Questions and Problems 387
Challenge Questions 388
Answers 389
12
Solutions 390

Career: Dialysis Nurse
12.1 Solutions 391
CHEMISTRY LINK TO HEALTH
Water in the Body 393
12.2 Electrolytes and Nonelectrolytes 395
CHEMISTRY LINK TO HEALTH
Electrolytes in Body Fluids 396
12.3 Solubility 397
CHEMISTRY LINK TO HEALTH
Gout and Kidney Stones: A Problem ofSaturation in Body Fluids398
12.4 Solution Concentrations 404
12.5 Dilution of Solutions 412
12.6 Chemical Reactions in Solution 415
12.7 Molality and Freezing Point Lowering/Boiling Point Elevation 419
12.8 Properties of Solutions: Osmosis 425
CHEMISTRY LINK TO HEALTH
Dialysis by the Kidneys and the Artificial
Kidney 427
Concept Map 430
Chapter Review 430
Key Terms 431
Core Chemistry Skills 432
Understanding the Concepts 433
Additional Questions and Problems 434
Challenge Questions 435
Answers 436
13
Reaction Ratesand ChemicalEquilibrium439

Career: Chemical Oceanographer
13.1 Rates of Reactions 440
CHEMISTRY LINK TO THE ENVIRONMENT
Catalytic Converters 444
13.2 Chemical Equilibrium 445
13.3 Equilibrium Constants 448
13.4 Using Equilibrium Constants 452
13.5 Changing Equilibrium Conditions: Le Châtelier's Principle 456
CHEMISTRY LINK TO HEALTH
Oxygen-Hemoglobin Equilibrium andHypoxia 459
CHEMISTRY LINK TO HEALTH
Homeostasis: Regulation of Body
Temperature 461
13.6 Equilibrium in Saturated Solutions 462
Concept Map 466
Chapter Review 466
Key Terms 467
Core Chemistry Skills 467
Understanding the Concepts 468
Additional Questions and Problems 469
Challenge Questions 470
Answers 471
14
Acids and Bases 473

Career: Clinical Laboratory Technician
14.1 Acids and Bases 474
14.2 Brønsted-Lowry Acids and Bases 477
14.3 Strengths of Acids and Bases 480
14.4 Dissociation Constants for Acids and Bases 484
14.5 Dissociation of Water 487
14.6 The pH Scale 490
CHEMISTRY LINK TO HEALTHStomach Acid, HCl 497
14.7 Reactions of Acids and Bases 498
CHEMISTRY LINK TO HEALTH
Antacids 499
14.8 Acid-Base Titration 500
14.9 Buffers 502
CHEMISTRY LINK TO HEALTH
Buffers in the Blood Plasma 505
Concept Map 509
Chapter Review 509
Key Terms 510
Key Math Skills 511
Core Chemistry Skills 511
Understanding the Concepts 512
Additional Questions and Problems 513
Challenge Questions 514
Answers 515
Combining Ideas from Chapters 11 to 14 518
15
Oxidation andReduction 521

Career: Dentist
15.1 Oxidation and Reduction 522
15.2 Balancing Oxidation-Reduction Equations Using Half-Reactions 528
15.3 Electrical Energy from Oxidation-Reduction Reactions 533
CHEMISTRY LINK TO THE ENVIRONMENT
Corrosion: Oxidation of Metals 539
CHEMISTRY LINK TO THE ENVIRONMENT
Fuel Cells: Clean Energy for the Future 541
15.4 Oxidation-Reduction Reactions That Require Electrical Energy 542
Concept Map 545
Chapter Review 545
Key Terms 546
Core Chemistry Skills 546
Understanding the Concepts 547
Additional Questions and Problems 548
Challenge Questions 550
Answers 550
16NuclearChemistry553

Career: Radiologist
16.1 Natural Radioactivity 554
16.2 Nuclear Reactions 558
CHEMISTRY LINK TO HEALTHRadon in Our Homes 559
16.3 Radiation Measurement 564
CHEMISTRY LINK TO HEALTH
Radiation and Food 565
16.4 Half-Life of a Radioisotope 567
CHEMISTRY LINK TO THE ENVIRONMENTDating Ancient Objects570
16.5 Medical Applications Using Radioactivity 572
CHEMISTRY LINK TO HEALTH Brachytherapy 574
16.6 Nuclear Fission and Fusion 575
CHEMISTRY LINK TO THE ENVIRONMENT Nuclear Power Plants 578
Concept Map 580
Chapter Review 580
Key Terms 581
Core Chemistry Skills 581
Understanding the Concepts 582
Additional Questions and Problems 583
Challenge Questions 584
Answers 584
Combining Ideas from Chapters 15 and 16 586
17OrganicChemistry588

Career: Firefighter/Emergency Medical Technician
17.1 Alkanes 589
17.2 Alkenes, Alkynes, and Polymers 599
CHEMISTRY LINK TO HEALTH
Hydrogenation of Unsaturated Fats 602
17.3 Aromatic Compounds 606
CHEMISTRY LINK TO THE ENVIRONMENT
Some Common Aromatic Compounds 607
17.4 Alcohols and Ethers 608
CHEMISTRY LINK TO HEALTHSome Important Alcohols, Phenols, andEthers 610
17.5 Aldehydes and Ketones 612
CHEMMISTRY
17.6 Carboxylic Acids and Esters 616
CHEMISTRY LINK TO HEALTH
Carboxylic Acids in Metabolism 618
17.7 Amines and Amides 623
CHEMISTRY LINK TO THE ENVIRONMENT
Alkaloids: Amines in Plants 625
Concept Map 630
Chapter Review 630
Summary of Naming 631
Summary of Reactions 632
Key Terms 632
Core Chemistry Skills 633
Understanding the Concepts 634
Additional Questions and Problems 635
Challenge Questions 637
Answers 637

18
 Biochemistry

641Career: Clinical Lipid Specialist
18.1 Carbohydrates 642
CHEMISTRY LINK TO HEALTH Hyperglycemia and Hypoglycemia 644
18.2 Disaccharides and Polysaccharides 647
CHEMISTRY LINK TO HEALTH
How Sweet is My Sweetener? 650
18.3 Lipids 654
CHEMISTRY LINK TO HEALTH
Trans Fatty Acids and Hydrogenation 656
18.4 Amino Acids and Proteins 663
CHEMISTRY LINK TO HEALTH
Essential Amino Acids 665
18.5 Protein Structure 668
18.6 Proteins as Enzymes 672
18.7 Nucleic Acids 674
18.8 Protein Synthesis 680
Concept Map 686
Chapter Review 686
Key Terms 688
Core Chemistry Skills 689
Understanding the Concepts 690
Additional Questions and Problems 692
Challenge Questions 693
Answers 694
Combining Ideas from Chapters 17 and 18 698
Credits 701
Glossary/Index 705

Applications and Activities

Key Math Skills

Identifying Place Values 40
Using Positive and Negative Numbers in Calculations 41
Calculating Percentages 42
Solving Equations 43
Interpreting Graphs 44
Converting between Standard Numbers and Scientific Notation 47
Rounding Off 65
Calculating pH from $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] 492
Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from pH 496
Core Chemistry Skills
Counting Significant Figures 62
Using Significant Figures in Calculations 66
Using Prefixes 70
Writing Conversion Factors from Equalities 73
Using Conversion Factors 80
Using Density as a Conversion Factor 88
Classifying Matter 100
Identifying Physical and Chemical Changes 105
Converting between Temperature Scales 108
Using Energy Units 112
Calculating Specific Heat 116
Using the Heat Equation 116
Counting Protons and Neutrons 146
Writing Atomic Symbols for Isotopes 148
Writing Electron Configurations 173
Using the Periodic Table
Electron Configurations 177
Identifying Trends in Periodic Properties 181
Drawing Lewis Symbols 182
Writing Positive and Negative Ions 197
Writing lonic Formulas 203
Naming lonic Compounds 204
Writing the Names and Formulas for Molecular Compounds 213
Converting Particles to Moles 225
Calculating Molar Mass 230
Using Molar Mass as a Conversion Factor 232
Calculating Mass Percent Composition 236
Calculating an Empirical Formula 238
Calculating a Molecular Formula 243
Balancing a Chemical Equation 258
Classifying Types of Chemical Reactions 264
Identifying Oxidized and Reduced Substances 270
Using Mole-Mole Factors 282
Converting Grams to Grams 285
Calculating Quantity of Product from a LimitingReactant 289
Calculating Percent Yield 293
Using the Heat of Reaction 297
Drawing Lewis Structures 312
Drawing Resonance Structures 316
Predicting Shape 318
Using Electronegativity 323
Identifying Polarity of Molecules 327
Identifying Intermolecular Forces 328
Calculating Heat for Change of State 332
Using the Gas Laws 360
Using the Ideal Gas Law 373
Calculating Mass or Volume of a Gas in a Chemical Reaction 377
Calculating Partial Pressure 379
Using Solubility Rules 401
Calculating Concentration 404
Using Concentration as a Conversion Factor 405
Calculating the Quantity of a Reactant or Product for a Chemical Reaction in Solution 415
Calculating the Freezing Point/Boiling Point of a Solution 422
Writing the Equilibrium Expression 448
Calculating an Equilibrium Constant 449
Calculating Equilibrium Concentrations 454
Using Le Châtelier's Principle 456
Writing the Solubility Product Expression 462
Calculating a Solubility Product Constant 463
Calculating the Molar Solubility 464
Identifying Conjugate Acid-Base Pairs 478
Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in Solutions 489
Writing Equations for Reactions of Acids and Bases 498
Calculating Molarity or Volume of an Acid or Base in a
Titration 501
Calculating the pH of a Buffer 504
Assigning Oxidation Numbers 523
Using Oxidation Numbers 525
Identifying Oxidizing and Reducing Agents 526
Using Half-Reactions to Balance Redox Equations 528
Identifying Spontaneous Reactions 533
Writing Nuclear Equations 558
Using Half-Lives 568
Naming and Drawing Alkanes 592
Writing Equations for Hydrogenation andPolymerization 601
Naming Aldehydes and Ketones 613
Naming Carboxylic Acids 617
Forming Esters 619
Forming Amides 626
Drawing Haworth Structures 644

Identifying Fatty Acids 654

Drawing Structures for Triacylglycerols 658
Drawing the Products for the Hydrogenation and Saponification of a Triacylglycerol 661
Drawing the lonized Form for an Amino Acid 663
Identifying the Primary, Secondary, Tertiary, and Quaternary Structures of Proteins 670
Writing the Complementary DNA Strand 677
Writing the mRNA Segment for a DNA Template 681
Writing the Amino Acid for an mRNA Codon 682

Guide to Problem Solving

Write a Number in Scientific Notation 49
Calculating Answers with the Correct Number of Significant Figures 67
Calculating Answers with the Correct Number of Decimal Places 68
Problem Solving Using Conversion Factors 79
Calculating Density 85
Using Density 88
Calculating Temperature 109
Calculating Specific Heat 116
Using Specific Heat 117
Calculating the Energy from a Food 120
Calculating Atomic Mass 151
Drawing Orbital Diagrams 174
Writing Electron Configurations 176
Writing Electron Configurations Using Sublevel Blocks 178
Naming lonic Compounds with Metals That Form a Single Ion 205
Naming lonic Compounds with Variable Charge Metals 207
Writing Formulas from the Name of an Ionic Compound 208
Writing Formulas with Polyatomic lons 211
Naming Ionic Compounds with Polyatomic lons 212
Naming Molecular Compounds 214
Writing Formulas for Molecular Compounds 215
Converting the Moles (or Particles) of a Substance to Particles (or Moles) 227
Calculating Moles of a Compound or Element 228
Calculating Molar Mass 230
Calculating the Moles (or Grams) of a Substance from Grams (or Moles) 232
Calculating the Grams of an Element (or Compound) from the Grams of a Compound (or Element) 234
Calculating Mass Percent Composition from Molar Mass 236
Calculating an Empirical Formula 238
Calculating a Molecular Formula from an Empirical Formula 243
Writing and Balancing a Chemical Equation 258
Calculating the Quantities of Reactants and Products in a Chemical Reaction 283
Calculating the Quantity (Moles or Grams) of Product from a Limiting Reactant 290

Calculating Percent Yield 294
Calculations Using the Heat of Reaction (ΔH) 298
Using Hess's Law 299
Drawing Lewis Structures 312
Predicting Shape (VSEPR Theory) 321
Determining the Polarity of a Molecule 328
Using a Heat Conversion Factor 333
Using the Gas Laws 360
Using Molar Volume 372
Using the Ideal Gas Law 374
Calculating the Molar Mass of a Gas 375
Using the Ideal Gas Law for Reactions 377
Calculating Partial Pressure 379
Calculating Partial Pressure of Gases Collected Over Water 381
Writing an Equation for the Formation of an Insoluble
lonic Compound 402
Calculating Solution Concentration 405
Using Concentration to Calculate Mass or Volume 406
Calculating Dilution Quantities 413
Calculations Involving Solutions in Chemical Reactions 415
Calculating Molality 421
Calculating Freezing Point Lowering/Boiling Point Elevation 423
Writing the Equilibrium Expression 449
Calculating the K_{c} Value 450
Using the Equilibrium Constant 454
Calculating $K_{\text {sp }} 463$
Calculating Molar Solubility from $K_{\text {sp }} 464$
Writing Conjugate Acid-Base Pairs 479
Writing the Acid Dissociation Expression 486
Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] and $\left[\mathrm{OH}^{-}\right.$] in Aqueous Solutions 489
Calculating pH of an Aqueous Solution 493
Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from pH 496
Balancing an Equation for Neutralization 499
Calculations for an Acid-Base Titration 501
Calculating pH of a Buffer 504
Using Oxidation Numbers 526
Identifying Oxidizing and Reducing Agents 527
Balancing Redox Equations Using Half-Reactions 529
Completing a Nuclear Equation 559
Using Half-Lives 568
Drawing Structural Formulas for Alkanes 593
Naming Alkanes with Substituents 595
Drawing Structural Formulas for Alkanes with Substituents 597
Naming Alkenes and Alkynes 601
Naming Aromatic Compounds 608
Naming Alcohols 610
Naming Aldehydes 614
Naming Ketones 615
Naming Carboxylic Acids 618
Naming Esters 621
Drawing Haworth Structures 644
Drawing Triacylglycerols 660
Drawing a Peptide 666

About the Authors

KAREN TIMBERLAKE is Professor Emerita of Chemistry at Los Angeles Valley College, where she taught chemistry for allied health and preparatory chemistry for 36 years. She received her bachelor's degree in chemistry from the University of Washington and her master's degree in biochemistry from the University of California at Los Angeles.

Professor Timberlake has been writing

 chemistry textbooks for $\mathbf{4 0}$ years. During that time, her name has become associated with the strategic use of pedagogical tools that promote student success in chemistry and the application of chemistry to real-life situations. More than one million students have learned chemistry using texts, laboratory manuals, and study guides written by Karen Timberlake. In addition to Basic Chemistry, fifth edition, she is also the author of General, Organic, and Biological Chemistry: Structures of Life, fifth edition, with the accompanying Study Guide, and Chemistry: An Introduction to General, Organic, and Biological Chemistry, twelfth edition, with the accompanying Study Guide, and Selected Solutions Manual, Laboratory Manual, and Essential Laboratory Manual.Professor Timberlake belongs to numerous scientific and educational organizations including the American Chemical Society (ACS) and the National Science Teachers Association (NSTA). She has been the Western Regional Winner of Excellence in College Chemistry Teaching Award given by
the Chemical Manufacturers Association. She received the McGuffey Award in Physical Sciences from the Textbook Authors Association for her textbook Chemistry: An Introduction to General, Organic, and Biological Chemistry, eighth edition. She received the "Texty" Textbook Excellence Award from the Textbook Authors Association for the first edition of Basic Chemistry. She has participated in education grants for science teaching including the Los Angeles Collaborative for Teaching Excellence (LACTE) and a Title III grant at her college. She speaks at conferences and educational meetings on the use of student-centered teaching methods in chemistry to promote the learning success of students.

Her husband, William Timberlake, who is the coauthor of this text, is Professor Emeritus of Chemistry at Los Angeles Harbor College, where he taught preparatory and organic chemistry for 36 years. He received his bachelor's degree in chemistry from Carnegie Mellon University and his master's degree in organic chemistry from the University of California at Los Angeles.

When the Professors Timberlake are not writing textbooks, they relax by playing tennis, ballroom dancing, hiking, traveling, trying new restaurants, cooking, and taking care of their grandchildren, Daniel and Emily.

DEDICATION

- Our son, John, daughter-in-law, Cindy, grandson, Daniel, and granddaughter, Emily, for the precious things in life
- The wonderful students over many years whose hard work and commitment always motivated us and put purpose in our writing

Preface

Welcome to the fifth edition of Basic Chemistry. This chemistry text was written and designed to prepare you for sciencerelated professions, such as engineering, nursing, medicine, environmental or agricultural science, or for careers such as laboratory technology. This text assumes no prior knowledge of chemistry. Our main objective in writing this text is to make the study of chemistry an engaging and a positive experience for you by relating the structure and behavior of matter to real life. This new edition introduces more problem-solving strategies, more problem-solving guides, new Analyze the Problem with Connect features, new Try It First and Engage features, conceptual and challenge problems, and new sets of combined problems.

It is our goal to help you become a critical thinker by understanding scientific concepts that will form a basis for making important decisions about issues concerning health and the environment. Thus, we have utilized materials that

- help you to learn and enjoy chemistry
- relate chemistry to careers that interest you
- develop problem-solving skills that lead to your success in chemistry
- promote learning and success in chemistry

New for the Fifth Edition

New and updated features have been added throughout this fifth edition, including the following:

- NEW AND UPDATED! Chapter Openers provide timely examples and engaging, topical issues of the chemistry that is part of contemporary professions.
- NEW! A Follow Up story continues with material and questions related to the chapter opener.
- NEW! Engage feature asks students to think about the paragraph they are reading and to test their understanding by answering the Engage question in the margin, which is related to the topic.
- NEW! Try It First now precedes the Solution section of each Sample Problem to encourage the student to work on the problem before reading the given Solution.
- NEW! Connect feature added to Analyze the Problem boxes indicates the relationships between Given and Need.
- NEW! Applications are added to Questions and Problems sets that show the relevance between the chemistry content and the chapter opener story.
- NEW! A new topic with questions and problems on Hess's Law, was added to Chapter 9.
- NEW! Interactive Videos give students the experience of step-by-step problem solving for problems from the text.
- UPDATED! Chapter Readiness sections at the beginning of each chapter list the Key Math Skills and Core Chemistry Skills from the previous chapters, which provide the foundation for learning new chemistry principles in the current chapter.
- UPDATED! Key Math Skills review basic math relevant to the chemistry the students are learning throughout the text. A Key Math Skill Review at the end of each chapter summarizes and gives additional examples.
- UPDATED! Core Chemistry Skills identify the key chemical principles in each chapter that are required for successfully learning chemistry. A Core Chemistry Skill Review at the end of each chapter helps reinforce the material and gives additional examples.
- UPDATED! Analyze the Problem features included in the Solutions of the Sample Problems strengthen criti-cal-thinking skills and illustrate the breakdown of a word problem into the components required to solve it.
- UPDATED! Questions and Problems, Sample Problems, and art demonstrate the connection between the chemistry being discussed and how these skills will be needed in professional experience.
- UPDATED! Combining Ideas features offer sets of integrated problems that test students' understanding by integrating topics from two or more previous chapters.

Chapter Organization of the Fifth Edition

In each textbook we write, we consider it essential to relate every chemical concept to real-life issues. Because a chemistry course may be taught in different time frames, it may be difficult to cover all the chapters in this text. However, each chapter is a complete package, which allows some chapters to be skipped or the order of presentation to be changed.

Chapter 1, Chemistry in Our Lives, discusses the Scientific Method in everyday terms, guides students in developing a study plan for learning chemistry, with a section of Key Math Skills that reviews the basic math, including scientific notation needed in chemistry calculations.

- The Chapter Opener and Follow Up feature the work and career of a forensic scientist.
- "Scientific Method: Thinking Like a Scientist" discusses the scientific method in everyday terms.
- A new Sample Problem requires the interpretation of a graph to determine the decrease in a child's temperature when given Tylenol.
- Key Math Skills are: Identifying Place Values, Using Positive and Negative Numbers in Calculations including a new feature Calculator Operations, Calculating Percentages, Solving Equations, Interpreting Graphs, and Converting between Standard Numbers and Scientific Notation.

Chapter 2, Chemistry and Measurements, looks at measurement and emphasizes the need to understand numerical relationships of the metric system. Significant figures are discussed in the determination of final answers. Prefixes from the metric system are used to write equalities and conversion factors for problem-solving strategies. Density is discussed and used as a conversion factor.

- The Chapter Opener and Follow Up feature the work and career of a registered nurse.
- New photos, including an endoscope, a urine dipstick, a pint of blood, Keflex capsules, and salmon for omega-3 fatty acids, are added to improve visual introduction to clinical applications of chemistry.
- Updated Sample Problems relate questions and problem solving to health-related topics such as the measurements of blood volume, omega- 3 fatty acids, radiological imaging, and medication orders.
- New Applications feature questions about measurements of daily values for minerals and vitamins, equalities and conversion factors for medications.
- A new Key Math Skill, Rounding Off, has been added.
- Core Chemistry Skills are: Counting Significant Figures, Using Significant Figures in Calculations, Using Prefixes, Writing Conversion Factors from Equalities, Using Conversion Factors, and Using Density as a Conversion Factor.

Chapter 3, Matter and Energy, classifies matter and states of matter, describes temperature measurement, and discusses energy, specific heat, and energy in nutrition. Physical and chemical changes and physical and chemical properties are discussed.

- The Chapter Opener and Follow Up feature the work and career of a dietitian.
- New Questions and Problems and Sample Problems include high temperatures used in cancer treatment, the energy produced by a high-energy shock output of a defibrillator, body temperature lowering using a cooling cap, and ice bag therapy for muscle injury.
- Core Chemistry Skills are: Classifying Matter, Identifying Physical and Chemical Changes, Converting between

Temperature Scales, Using Energy Units, Calculating Specific Heat, and Using the Heat Equation.

- The interchapter problem set, Combining Ideas from Chapters 1 to 3, completes the chapter.

Chapter 4, Atoms and Elements, introduces elements and atoms and the periodic table element. The names and symbols of element 114, Flerovium, Fl, and element 116, Livermorium, Lv, are part of the periodic table. Atomic numbers and mass number are determined for isotopes. Atomic mass is calculated using the masses of the naturally occurring isotopes and their abundances.

- The Chapter Opener and Follow Up feature the work and career of a farmer.
- Atomic number and mass number are used to calculate the number of protons and neutrons in an atom.
- The number of protons and neutrons are used to calculate the mass number and to write the atomic symbol for an isotope.
- A weighted average analogy uses $8-\mathrm{lb}$ and 14 -lb bowling balls and the percent abundance of each to calculate weighted average of a bowling ball.
- Core Chemistry Skills are: Counting Protons and Neutrons, and Writing Atomic Symbols for Isotopes.

Chapter 5, Electronic Structure of Atoms and Periodic Trends, uses the electromagnetic spectrum to explain atomic spectra and develop the concept of energy levels and sublevels. Electrons in sublevels and orbitals are represented using orbital diagrams and electron configurations. Periodic properties of elements, including atomic radius and ionization energy, are related to their valence electrons. Small periodic tables illustrate the trends of periodic properties.

- The Chapter Opener and Follow Up feature the work and career of a materials engineer.
- The diagram for the electromagnetic spectrum has been updated.
- The three-dimensional representations of the s, p, and d orbitals are drawn.
- The trends in periodic properties are described for valence electrons, atomic size, ionization energy, and metallic character.
- Core Chemistry Skills are: Writing Electron Configurations, Using the Periodic Table to Write Electron Configurations, Identifying Trends in Periodic Properties, and Drawing Lewis Symbols.

Chapter 6, Ionic and Molecular Compounds, describes the formation of ionic and covalent bonds. Chemical formulas are written, and ionic compounds-including those with polyatomic ions-and molecular compounds are named.

- The Chapter Opener and Follow Up feature the work and career of a pharmacist.
- Core Chemistry Skills are: Writing Positive and Negative Ions, Writing Ionic Formulas, Naming Ionic Compounds, and Writing the Names and Formulas for Molecular Compounds.

Chapter 7, Chemical Quantities, discusses Avogadro's number, the mole, and molar masses of compounds, which are used in calculations to determine the mass or number of particles in a quantity of a substance. The mass percent composition of a compound is calculated and used to determine its empirical and molecular formula.

- The Chapter Opener and Follow Up feature the work and career of a veterinarian.
- New and updated Guides to Problem Solving are: Converting the Moles (or Particles) of a Substance to Particles (or Moles), Calculating Moles of a Compound or Element, Calculating the Grams of an Element (or Compound) from the Grams of a Compound (or Element), and Calculating Mass Percent Composition from Molar Mass.
- Core Chemistry Skills are: Converting Particles to Moles, Calculating Molar Mass, Using Molar Mass as a Conversion Factor, Calculating Mass Percent Composition, Calculating an Empirical Formula, and Calculating a Molecular Formula.
- The interchapter problem set, Combining Ideas from Chapters 4 to 7, completes the chapter.

Chapter 8, Chemical Reactions introduces the method of balancing chemical equations, and discusses how to classify chemical reactions into types: combination, decomposition, single replacement, double replacement, and combustion reactions. A new section, Oxidation-Reduction Reactions, has been added.

- The Chapter Opener and Follow Up feature the work and career of an exercise physiologist.
- Core Chemistry Skills are: Balancing a Chemical Equation, Classifying Types of Chemical Reactions, and Identifying Oxidized and Reduced Substances.

Chapter 9, Chemical Quantities in Reactions, describes the mole and mass relationships among the reactants and products and provides calculations of limiting reactants and percent yields. A first section was divided into two new sections with an emphasis on the Law of Conservation of Mass.

- The Chapter Opener and Follow Up feature the work and career of an environmental scientist.
- Mole and mass relationships among the reactants and products are examined along with calculations of percent yield and limiting reactants.
- A new subsection, with questions and problems on Hess's Law, was added.
- Core Chemistry Skills are: Using Mole-Mole Factors, Converting Grams to Grams, Calculating Quantity of Product from a Limiting Reactant, Calculating Percent Yield, and Using the Heat of Reaction.

Chapter 10, Properties of Solids and Liquids, introduces Lewis structures for molecules and ions with single and multiple bonds as well as resonance structures. Electronegativity leads to a discussion of the polarity of bonds and molecules. Lewis structures and VSEPR theory illustrate covalent bonding and the three-dimensional shapes of molecules and ions. The intermolecular forces between particles and their impact on states of matter and changes of state are described. The energy involved with changes of state is calculated.

- The Chapter Opener and Follow Up feature the work and career of a histologist.
- Lewis structures are drawn for molecules and ions with single, double, and triple bonds. Resonance structures are drawn if two or more Lewis structures are possible.
- Shapes and polarity of bonds and molecules are predicted using VSEPR theory.
- Intermolecular forces in compounds are discussed including ionic bonds, hydrogen bonds, dipole-dipole attractions, and dispersion forces.
- Core Chemistry Skills are Drawing Lewis Structures, Drawing Resonance Structures, Predicting Shape, Using Electronegativity, Identifying Polarity of Molecules, Identifying Intermolecular Forces, and Calculating Heat for Change of State.
- The interchapter problem set, Combining Ideas from Chapters 8 to 10 , completes the chapter.

Chapter 11, Gases, discusses the properties of gases and calculates changes in gases using the gas laws: Boyle's, Charles's, Gay-Lussac's, Avogadro's, Dalton's, and the Ideal Gas Law. Problem-solving strategies enhance the discussion and calculations with gas laws including chemical reactions using the ideal gas law.

- The Chapter Opener and Follow Up feature the work and career of a respiratory therapist.
- Applications includes calculations of mass or pressure of oxygen in uses of hyperbaric chambers.
- Core Chemistry Skills are: Using the Gas Laws, Using the Ideal Gas Law, Calculating Mass or Volume of a Gas in a Chemical Reaction, and Calculating Partial Pressure.

Chapter 12, Solutions, describes solutions, electrolytes, saturation and solubility, insoluble ionic compounds, concentrations, and osmosis. New problem-solving strategies clarify
the use of concentrations to determine volume or mass of solute. The volumes and concentrations of solutions are used in calculations of dilutions, reactions, and titrations. Properties of solutions, osmosis in the body, dialysis and changes in the freezing and boiling points of a solvent are discussed.

- The Chapter Opener and Follow Up feature the work and career of a dialysis nurse.
- Core Chemistry Skills are: Using Solubility Rules, Calculating Concentration, Using Concentration as a Conversion Factor, Calculating the Quantity of a Reactant or Product for a Chemical Reaction in Solution, and Calculating the Freezing Point/Boiling Point of a Solution.

Chapter 13, Reaction Rates and Chemical Equilibrium, looks at the rates of reactions and the equilibrium condition when forward and reverse rates for a reaction become equal. Equilibrium expressions for reactions are written and equilibrium constants are calculated. The equilibrium constant is used to calculate the concentration of a reactant or product at equilibrium. Le Châtelier's principle is used to evaluate the impact on concentrations when stress is placed on a system at equilibrium. The concentrations of solutes in a solution is used to calculate the solubility product constant $\left(K_{\text {sp }}\right)$.

- The Chapter Opener and Follow Up feature the work and career of a chemical oceanographer.
- New problems that visually represent equilibrium situations are added.
- Core Chemistry Skills are: Writing the Equilibrium Expression, Calculating an Equilibrium Constant, Calculating Equilibrium Concentrations, Using Le Châtelier's Principle, Writing the Solubility Product Expression, Calculating a Solubility Product Constant, and Calculating the Molar Solubility.

Chapter 14, Acids and Bases, discusses acids and bases and their strengths, and conjugate acid-base pairs. The dissociation of strong and weak acids and bases is related to their strengths as acids or bases. The dissociation of water leads to the water dissociation expression, K_{w}, the pH scale, and the calculation of pH . Chemical equations for acids in reactions are balanced and titration of an acid is illustrated. Buffers are discussed along with their role in the blood. The pH of a buffer is calculated.

- The Chapter Opener and Follow Up feature work and career of a clinical laboratory technician.
- A new Guide to Writing the Acid Dissociation Expression has been added.
- Key Math Skills are: Calculating pH from $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, and Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from pH .
- Core Chemistry Skills are: Identifying Conjugate AcidBase Pairs, Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in Solutions, Writing Equations for Reactions of Acids and Bases,

Calculating Molarity or Volume of an Acid or Base in a Titration, and Calculating the pH of a Buffer.

- The interchapter problem set, Combining Ideas from Chapters 11 to 14, completes the chapter.

Chapter 15, Oxidation and Reduction, looks at the characteristics of oxidation and reduction reactions. Oxidation numbers are assigned to the atoms in elements, molecules, and ions to determine the components that lose electrons during oxidation and gain electrons during reduction. The half-reaction method is utilized to balance oxidation-reduction reactions. The production of electrical energy in voltaic cells and the requirement of electrical energy in electrolytic cells are diagrammed using half-cells. The activity series is used to determine the spontaneous direction of an oxidation-reduction reaction.

- The Chapter Opener and Follow Up feature the work and career of a dentist.
- A new Guide to Identifying Oxidizing and Reducing Agents has been added.
- Core Chemistry Skills are: Assigning Oxidation Numbers, Using Oxidation Numbers, Identifying Oxidizing and Reducing Agents, Using Half-Reactions to Balance Redox Equations, and Identifying Spontaneous Reactions.

Chapter 16, Nuclear Chemistry, looks at the types of radiation emitted from the nuclei of radioactive atoms. Nuclear equations are written and balanced for both naturally occurring radioactivity and artificially produced radioactivity. The half-lives of radioisotopes are discussed, and the amount of time for a sample to decay is calculated. Radioisotopes important in the field of nuclear medicine are described. Fission and fusion and their role in energy production are discussed.

- The Chapter Opener and Follow Up feature the work and career of a radiologist.
- Core Chemistry Skills are: Writing Nuclear Equations, and Using Half-Lives.
- The interchapter problem set, Combining Ideas from Chapters 15 and 16, completes the chapter.

Chapter 17, Organic Chemistry, compares inorganic and organic compounds, and describes the condensed and line-angle structural formulas of alkanes, alkenes, alcohols, ethers, aldehydes, ketones, carboxylic acids, esters, amines, and amides.

- The Chapter Opener and Follow Up feature the work and career of a firefighter/emergency medical technician.
- The properties of organic and inorganic compounds are now compared in Table 17.1.
- Line-angle structural formulas were added to Table 17.2 IUPAC Names, Molecular Formulas, Condensed and Line-Angle Structural Formulas of the First Ten Alkanes.
- More line-angle structures are included in text examples, sample problems, questions and problems.
- The two-dimensional and three-dimensional representations of methane and ethane are illustrated using condensed structural formulas, expanded structural formulas, ball-and-stick models, space-filling models, and wedge-dash models.
- The topic of structural isomers was added using condensed and line-angle structural formulas.
- Common substituents butyl, isobutyl, sec-butyl and tert-butyl were added to Table 17.3.
- Properties of solubility and density of alkanes were added.
- The chemical reaction of hydrogenation of alkenes and unsaturated fats was added.
- Updated recycling symbols for polymers were added.
- Core Chemistry Skills are: Naming and Drawing Alkanes, Writing Equations for Hydrogenation and Polymerization, Naming Aldehydes and Ketones, Naming Carboxylic Acids, Forming Esters, and Forming Amides.

Chapter 18, Biochemistry, looks at the chemical structures and reactions of chemicals that occur in living systems. We focus on four types of biomolecules-carbohydrates, lipids, proteins, and nucleic acids-as well as their biochemical reactions.

Acknowledgments

The preparation of a new text is a continuous effort of many people. As in our work on other textbooks, we are thankful for the support, encouragement, and dedication of many people who put in hours of tireless effort to produce a high-quality book that provides an outstanding learning package. The editorial team at Pearson Publishing has done an exceptional job. We want to thank, Jeanne Zalesky, editor in chief, and Editors Terry Haugen and Scott Dustan, who supported our vision of this fifth edition and the development of new problem-solving strategies.

We much appreciate all the wonderful work of project manager Laura Perry, who was like an angel encouraging us at each step, while skillfully coordinating reviews, art, web site materials, and all the things it takes to make a book come together. We appreciate the work of Lisa Pierce, program manager, and Lindsay Bethoney of Lumina Datamatics, Inc., who brilliantly coordinated all phases of the manuscript to the final pages of a beautiful book. Thanks to Mark Quirie, manuscript and accuracy reviewer, and copy editors of Lumina Datamatics, Inc., who precisely analyzed and edited the initial and final

- The Chapter Opener and Follow Up feature the work and career of a clinical lipid specialist.
- Fischer projections with and D and L notations are described.
- Monosaccharides are classified as aldo or keto pentoses or hexoses.
- Haworth structures are drawn for monosaccharides, disaccharides, and polysaccharides.
- The Guide to Drawing Haworth Structures has been rewritten.
- Lipids distinguishes between the structures of fatty acids, waxes, triacylglycerols, and steroids.
- The shapes of proteins are related to the activity and regulation of enzyme activity.
- The genetic code is described and utilized in the process of protein synthesis.
- Core Chemistry Skills are: Drawing Haworth Structures, Identifying Fatty Acids, Drawing Structures for Triacylglycerols, Drawing the Products for the Hydrogenation and Saponification of a Triacylglycerol, Drawing the Ionized Form for an Amino Acid, Identifying the Primary, Secondary, Tertiary, and Quaternary Structures of Proteins, Writing the Complementary DNA Strand, and Writing the mRNA Segment for a DNA Template.
- The interchapter problem set, Combining Ideas from Chapters 17 and 18, completes the chapter.
manuscripts and pages to make sure the words and problems were correct to help students learn chemistry. Their keen eyes and thoughtful comments were extremely helpful in the development of this text.

We are especially proud of the art program in this text, which lends beauty and understanding to chemistry. We would like to thank Marilyn Perry and Gary Hespenheide, interior and cover design managers and book designer, whose creative ideas provided the outstanding design for the cover and pages of the book. Erica Gordon, photo researcher, was invaluable in researching and selecting vivid photos for the text so that students can see the beauty of chemistry. Thanks also to Bio-Rad Laboratories for their courtesy and use of KnowItAll ChemWindows drawing software that helped us produce chemical structures for the manuscript. The macro-to-micro illustrations designed by Production Solutions and Precision Graphics give students visual impressions of the atomic and molecular organization of everyday things and are a fantastic learning tool. We also appreciate all the hard work put in by the marketing team in the field and Executive Marketing Manager, Chris Barker.

We are extremely grateful to an incredible group of peers for their careful assessment of all the new ideas for the text; for their suggested additions, corrections, changes, and deletions; and for providing an incredible amount of feedback about improvements for the book.

If you would like to share your experience with chemistry, or have questions and comments about this text, we would appreciate hearing from you.

Karen and Bill Timberlake
Email: khemist@aol.com

FAVORITE QUOTES

The whole art of teaching is only the art of awakening the natural curiosity of young minds.
-Anatole France
One must learn by doing the thing; though you think you know it, you have no certainty until you try.
—Sophocles
Discovery consists of seeing what everybody has seen and thinking what nobody has thought.
—Albert Szent-Györgyi
I never teach my pupils; I only attempt to provide the conditions in which they can learn.
—Albert Einstein

Acknowledgments for the Global Edition

Pearson would like to thank and acknowledge the following people for their contributions to the Global Edition.

Contributor

Angela Mai-Yan Yuen
The University of Hong Kong

Reviewers

Prasanna Ghalsasi
The MS University of Baroda

Chitralekha Sidana

Angela Pui-Ling Tong
The University of Hong Kong
Professor Patrick Henry Toy
The University of Hong Kong

Fifth Edition Reviewers

David Atwood
University of Kentucky

Nathan Barrows
Grand Valley State University
Derek Behmke
Georgia Gwinnett College
Nancy Christensen
Waubonsee Community College
David Dollar
Tarrant Community College - SE
Maegan Harris
Waubonsee Community College
Yohani Kayinamura
Daytona State College
Andrew Knight
Florida Institute of Technology
Danica Nowosielski
Hudson Valley Community College
Mark Quirie
Algonquin College
Erin Rennells
Hudson Valley Community College
Kathy Wall
Waubonsee Community College
Mingming Xu
West Virginia University

Accuracy Reviewer

Mark Quirie
Algonquin College

Previous Edition Reviewers

Edward Alexander
San Diego Mesa College
Kristen Casey
Anne Arundel Community College
James Falender
Central Michigan University
Tamara Hanna
Texas Tech University
Shawn Korman
Rio Salado Community College
Robin Lasey
Arkansas Tech University
Lynda Nelson
University of Arkansas Fort Smith
Mary Repaske
Cincinnati State Technical and Community College
Mitchell Robertson
Southwestern Illinois College
Alan Sherman
Middlesex County College
Trent Vorlicek
Minnesota State University-Mankato
Joy Walker
Truman College
Marie Wolff
Joliet Junior College
Regina Zibuck
Wayne State University

Feature

LEARNING GOAL Describe the intermolecular forces between ions, polar covalent molecules, and nonpolar covalent molecules.

Volume (V)

The volume of gas equals the size of the container in which the gas is placed. When you inflate a tire or a basketball, you are adding more gas particles. The increase in the number
of particles hitting the walls of the tire or basketball increases the volume. Sometimes, on a cold morning, a tire looks flat. The volume of the tire has decreased because a lower temperature decreases the speed of the molecules, which in turn reduces the force of their impacts on the walls of the tire. The most common units for volume measurement ar liters (L) and milliliters (mL).

Description
 Learning Goals at the beginning and end of each section identify the key concepts for that section and provide a roadmap for your study.

Timberlake's accessible Writing
Style is based on careful development of chemical concepts suited to the skills and backgrounds of students in chemistry.

Key Math Skills review the basic math needed for chemistry. Instructors can also assign these through MasteringChemistry.

Benefit
Help you focus your studying by emphasizing
what is most important in each section.
Page

Helps you understand 356 new terms and chemical concepts.

Help you master the 492 basic quantitative skills to succeed in chemistry.

Help you master the 66 basic problem-solving skills needed to succeed in chemistry.

Using Significant Figures in Calculations

Core Chemistry Skills identify content crucial to problem-solving strategies. Instructors can also assign these through MasteringChemistry.

The TRY IT FIRST feature encourages you to try to solve the problem before you compare your work with the Solution.

The Chapter Reviews include Learning Goals and visual thumbnails to summarize the key points in each section.

Helps you identify what you know about the solution and what you need to learn.

CHAPTER REVIEW

17.1 Alkanes

LEARNING GOAL Write the
IUPAC names and draw the
condensed or line-angle structura formulas for alkanes.

Help you determine your concepts and study for your tests.

Key Terms with definitions are listed at the end of each chapter as well as in the Glossary/Index at the end of the text.

Help you recall the 247 important new terms in each chapter.

KEY TERMS

Avogadro's number The number of items in a mole, equal to 6.022×10^{23}.
empirical formula The simplest or smallest whole-number ratio of the atoms in a formula.
formula unit The group of ions represented by the formula of an ionic compound.

Concept Maps at the end of each chapter show how all the key concepts fit together.

Encourage learning by 91 giving you a visual guide to the interrelationship among all the concepts new to each chapter.

Tools to engage students in chemistry and show them how to solve problems

Feature

Applications

2.23 Identify the number of significant figures in each of the following:
a. The mass of a neonate is 1.607 kg .
b. The Daily Value (DV) for iodine for an infant is 130 mcg .
c. There are 4.02×10^{6} red blood cells in a blood sample.

Guide to Determining the
Polarity of a Molecule
STEP 1
Determine if the bonds are polar covalent or nonpolar covalent.

Description
Applications in Questions and Problems show the relevance to the chemistry concepts in the chapter.

Guides to Problem Solving (GPS) illustrate the steps needed to solve problems.

Analyze the Problems convert a word problem into components for problem solving. New Connect features specify information that relates the Given and Need sections.

Questions and Problems placed at the end of each section are paired. The Answers to the odd-numbered problems are given at the end of each chapter.

Sample Problems illustrate worked-out solutions with explanations and required calculations. Study Checks associated with each Sample Problem allow you to check your problem-solving strategies with the

Answer.

Understanding the Concepts are questions with visual representations placed at the end of each chapter.

Additional Questions and Problems at the end of each chapter provide further study and application of the topics from the entire chapter. Problems are paired and the Answers to the odd-numbered problems are given at the end of each chapter.

Challenge Questions at the end of each chapter provide complex questions. Answers to the odd-numbered questions are given at the end of each chapter. ter. Howeres they of questions are related the topics in the hapter. However, they do not all follow the chapter order, and they require you to combine concepts and skills from several sections. These questions will help you increase your critical thinking skills and prepare for your next exam.
8.53 Balance each of the following chemical equations, and identify the type of reaction: (8.1, 8.2, 8.3)
a. $\mathrm{MgCO}_{3}(s) \longrightarrow \mathrm{MgO}(s)+\mathrm{CO}_{2}(g)$
b. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$
c. $\mathrm{Al}(s)+\mathrm{CuCl}_{2}(a q) \longrightarrow \mathrm{AlCl}_{3}(a q)+\mathrm{Cu}(s)$
d. $\mathrm{AgNO}_{3}(a q)+\mathrm{MgCl}_{2}(a q) \longrightarrow \mathrm{AgCl}(s)+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(a q)$

Combining Ideas are sets of integrated problems placed after every two to four chapters that are useful as practice exams. Answers to the odd-numbered problems are given at the end of each Combining Ideas.
Benefit
Show you how the
chemistry you are
learning is related to
real life.

Visually guide you step-by-step through each problem-solving strategy.
Help you identify and connect the components within a word problem to set up a solution strategy.

Encourage you to
become involved immediately in the process of problem solving.

Provide the 66 intermediate steps to guide you successfully through each type of problem.

Build an understanding 274 of newly learned chemical concepts.

Promote critical

 thinking.
Promote critical

 and cooperative328
learning environments.
learning environments.

Test your understanding 252 of the concepts from previous chapters by integrating topics.

Resources

Basic Chemistry, fifth edition, provides an integrated teaching and learning package of support material for both students and professors.

Name of Supplement	Available in Print	Available Online	Instructor or Student Supplement	Description
MasteringChemistry ${ }^{\oplus}$ (www.masteringchemistry .com)		\checkmark	Resource for Students and Instructors	MasteringChemistry ${ }^{\otimes}$ from Pearson is the leading online teaching and learning system designed to improve results by engaging students before, during, and after class with powerful content. Ensure that students arrive ready to learn by assigning educationally effective content before class, and encourage critical thinking and retention with in-class resources such as Learning Catalytics. Students can further master concepts after class through traditional homework assignments that provide hints and answer-specific feedback. The Mastering gradebook records scores for all automatically graded assignments while diagnostic tools give instructors access to rich data to assess student understanding and misconceptions.
Pearson eText		\checkmark	Resource for Students	The fifth edition of Basic Chemistry features a Pearson eText enhanced with media within Mastering. In conjunction with Mastering assessment capabilities, Videos, and animations will improve student engagement and knowledge retention. Additionally, the Pearson eText offers students the power to create notes, highlight text in different colors, create bookmarks, zoom, and view single or multiple pages.
Instructor's Solutions Manual-Download Only		\checkmark	Resource for Instructors	Prepared by Mark Quirie, the solutions manual highlights chapter topics, and includes answers and solutions for all questions and problems in the text.
Instructor Resource Materials-Download Only		\checkmark	Resource for Instructors	Includes all the art, photos, and tables from the book in JPEG format for use in classroom projection or when creating study materials and tests. In addition, the instructors can access modifiable PowerPoint ${ }^{\mathrm{TM}}$ lecture outlines. Also available are downloadable files of the Instructor's Solutions Manual and a set of "clicker questions" designed for use with classroom-response systems. Also visit the Pearson Education catalog page for Timberlake's Basic Chemistry, fifth edition, at www.pearsonglobaleditions.com/timberlake to download available instructor supplements.
TestGen Test BankDownload Only		\checkmark	Resource for Instructors	Prepared by William Timberlake, this resource includes more than 2000 questions in multiple-choice, matching, true/false, and shortanswer format.
Laboratory Manual by Karen Timberlake	\checkmark		Resource for Students	This best-selling lab manual coordinates 35 experiments with the topics in Basic Chemistry, fifth edition, uses laboratory investigations to explore chemical concepts, develop skills of manipulating equipment, reporting data, solving problems, making calculations, and drawing conclusions.
Online Instructor Manual for Laboratory Manual		\checkmark	Resource for Students	This manual contains answers to report sheet pages for the Laboratory Manual and a list of the materials needed for each experiment with amounts given for 20 students working in pairs, available for download at www.pearsonglobaleditions.com/timberlake.

Highlighting Relevancy and Applications

Designed to prepare students for science-related careers, Basic Chemistry organizes chemical concepts and problem solving into clear, manageable pieces, ensuring students follow along and stay motivated throughout their first chemistry course. Timberlake's friendly writing style, student focus, challenging problems, and engaging applications continue to help students make connections between chemistry and their future careers as they develop problem-solving skills they'll need beyond the classroom.

Follow Ups and Applications

Chapter Openers throughout the text connect chemistry to real life. Each chapter begins with an image and details of a profession such as engineering, medicine, environmental science or agriculture science, or exercise physiology. Follow Ups at the end of chapter discuss the chemistry in the Chapter Opener and include Applications. These questions show students how the chemistry they are learning applies specifically to their professional careers.

Focusing on New Problem-Solving Strategies

This new edition introduces more problem-solving strategies, more problem-solving guides, new Analyze the Problem with Connect features, new Try It First and Engage features, conceptual and challenge problems, and new sets of combined problems.

- NEW! Connect feature has been added to the Analyze the Problem boxes, which specifies the information that relates the Given and Need sections.
- NEW! Try It First now precedes the Solution section of each Sample Problem to encourage the student to work on the problem before reading the given Solution.
- NEW! Engage feature asks students to think about the paragraph they are reading and to test their understanding by answering the Engage question in the margin, which is related to the topic.

Interactive Videos

Interactive videos and demonstrations help students through some of the more challenging topics by showing how chemistry works in real life and introducing a bit of humor into chemical problem solving and demonstrations. Topics include Using Conversion Factors, Balancing Nuclear Equations, and Chemical v. Physical Change.
Sample Calculations walk students through the most challenging chemistry problems and provide a fresh perspective on how to approach individual problems and plan solutions. Topics include Using Conversion Factors, Mass Calculations for Reactions, and Concentration of Solutions.

Green play button icons appear in the margins throughout the text. In the eText, the icons link to new interactive videos that the student can use to clarify and reinforce important concepts. All Interactive Videos are available in web and mobile-friendly formats through the eText, and are assignable activities in MasteringChemistry.

Interactive Video	SAMPLE PROBLEM 1.5 Solving Equations Solve the following equation for $V_{2}:$ $P_{1} V_{1}=P_{2} V_{2}$
Tolving Equations	TRY IT FIRST SOLUTION $P_{1} V_{1}=P_{2} V_{2}$ To solve for V_{2}, divide both sides by the symbol P_{2}. $\frac{P_{1} V_{1}}{P_{2}}=\frac{D_{2} V_{2}}{P_{2}}$ $V_{2}=\frac{P_{1} V_{1}}{P_{2}}$ STUDY CHECK 1.5

MasteringChemistry ${ }^{\text {© }}$

MasteringChemistry ${ }^{\circledR}$ from Pearson is the leading online teaching and learning system designed to improve results by engaging students before, during, and after class with powerful content. Instructors may ensure that students arrive ready to learn by assigning educationally effective content before class, and encourage critical thinking and retention with in-class resources such as Learning Catalytics. Students can further master concepts after class through traditional homework assignments that provide hints and answer-specific feedback. The Mastering gradebook records scores for all automatically graded assignments while diagnostic tools give instructors access to rich data to assess student understanding and misconceptions.

Mastering brings learning full circle by continuously adapting to each student and making learning more personal than ever-before, during, and after class.

Before Class

Dynamic Study Modules

Help students quickly learn chemistry! Now assignable, Dynamic Study Modules (DSMs) enable your students to study on their own and be better prepared with the basic math and chemistry skills needed to succeed in the course. The mobile app is available for iOS and Android devices for study on the go and results can be tracked in the MasteringChemistry gradebook.

During Class

Learning Catalytics

Learning Catalytics is a "bring your own device" student engagement, assessment, and classroom intelligence system. With Learning Catalytics you can:

- Assess students in real time, using open-ended tasks to probe student understanding.
- Understand immediately where students are and adjust your lecture accordingly.
- Manage student interactions with intelligent grouping and timing.

learning catalytics

After Class

\pm Conversion Factors in Medicine

120 priantes $\times \frac{20}{m}=7200$ meconds

Foder	tame	smbel
107	mapa	\cdots
107	(b)	k
10^{3}	meda	h
10^{4}	deen	do
10^{-1}	ad	d
10^{-3}	*ent	*
10^{3}	nin	m
10^{-}	nem	μ

Tutorials and Coaching

Students learn chemistry by practicing chemistry.
Tutorials, featuring specific wrong-answer feedback, hints, and a wide variety of educationally effective content, guide your students through the toughest topics in Basic Chemistry.

This page intentionally left blank

